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ABSTRACT

This paper examines the validity of the effective mass 
concept used in the CRASH 3 damage analysis
equations. In this study, the effective mass concept is 
described, the simplifying assumptions that it entails are 
detailed, and the accuracy of the concept is tested by 
comparing ∆Vs calculated from the CRASH 3 equations 
to results of numerical simulations with a non-central
impact model. This non-central impact model allowed
the effective mass concept to be tested in isolation from 
other assumptions of the CRASH 3 program. The results 
of this research have shown that the effective mass
concept accurately models the effects of collision force 
offset when certain conditions are met. These conditions 
are discussed, along with their implications for damage 
interpretation.

This paper also presents an analytic expression that
relates damage energy to closing speed (initial relative
velocity) for the general case of non-central collisions. 
Equations relating damage energy to closing speed for
the case of central collisions have been discussed
extensively in the literature. However, a comparable
equation for the general case of vehicle-to-vehicle non-
central impacts has not been reported. The effective
mass concept is used to generalize the relationship
between closing speed and damage energy. 

INTRODUCTION

Using the mass-spring system shown in Figure 1,
McHenry derived simple, closed-form equations that
relate the energy expended in crushing a vehicle to the 
change in velocity experienced by the vehicle during the 
impact (∆V) [5,6,7,8,9]. These equations, given by
Equations (1) and (2) below, form the basis of the
CRASH 3 damage analysis algorithm and are valid for
the case of central collisions, where the collision forces 
are directed through the centers of gravity of the
vehicles.

In Figure 1 and in Equations (1) and (2), M1 and M2 are
the vehicle masses, K1 and K2 are the structural
stiffnesses of the engaged vehicle structures, and E1

and E2 are the energies associated with crushing the
vehicle structures.
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McHenry extended Equations (1) and (2) to the general 
case of non-central collisions using the concept of an
effective vehicle mass. The effective mass concept was 
based on the idea that when the collision force does not 
pass through the center of gravity of a vehicle, the full 
weight of the vehicle does not participate in the collision. 
Application of the effective mass concept resulted in only 
slight modifications to the simple analytic equations
derived for the central case.

McHenry began the development of the effective mass 
concept by considering the collision model shown in
Figure 2. In this figure, I1 and I2 are the yaw moments of 
inertia of the vehicles, ψ1 and ψ2 are the angular
orientations of the vehicles, h1 and h2 are the distances 
that the collision forces are offset from the centers of
gravity of the vehicles – measured perpendicular to the 
line of action of the collision forces – and 1V ′∆  and 2V ′∆
are the changes in velocity experienced by each vehicle 

(1)

(2)

 

Figure 1 
The CRASH 3 Impact Model 



at point P, the point of application of the resultant
collision forces. The x1-y1 and x2-y2 frames are body-
fixed reference frames. It is assumed that during the
depicted collision, a common velocity is reached at the 
common point P, but not necessarily by the vehicle
centers of gravity.

With this impact model, McHenry arrived at the following 
generalized equations:
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In Equations (3) and (4), the multipliers, 1γ  and 2γ , are 
the effective mass multipliers and are given as follows:
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In Equation (5), k i is the radius of gyration of Vehicle 1 or 
2. The validity of Equations (3) and (4), and the effective 
mass concept that forms their base, was the
fundamental question of this study.

The effective mass concept represents an approximate
method for incorporating collision forces that are offset 
from the vehicle center of gravity, since McHenry’s
derivation of Equations (3) and (4) relied on writing the 
acceleration of point P on Vehicle 1 as follows:

111 ψ&&&&&& hXX P +=

In Equation (6), PX&&  is the acceleration at the point P, 

1X&&  is the acceleration at the center of gravity of Vehicle 

1, and 1ψ&&  is the angular acceleration of Vehicle 1.

Strictly speaking, Equation (6) is incomplete. A complete 
expression for the acceleration of a point on a rigid body 
relative to the center of gravity of that body takes the
following form [1,2]:
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In Equation (7), Pa
r

 is the acceleration of the point P, Ga
r

is the acceleration of the center of gravity, GPr
r

 is a

position vector that locates the point P in a reference
frame attached to the body at the center of gravity, 1ψ&  is 
the angular velocity of the body about the center of
gravity, and again, 1ψ&&  is the angular acceleration of the 
body about the center of gravity. The first term on the
right side of Equation (7) accounts for the translational 
acceleration of the center of gravity relative to the inertial 
(fixed) frame. The second term accounts for the angular 
acceleration of the reference frame attached to the body. 
And finally, the third term accounts for the centripetal 
acceleration of point P. A comparison of Equations (6) 
and (7) reveals that Equation (6) contains no term to
account for the centripetal acceleration of the point P.

Equation (7) results from taking the derivative with
respect to time of the velocity expression for a point on a 
rigid body relative to the body center of gravity, Equation 
(8) below.

GPGP rvv
r

&
rr ×+= 1ψ

The centripetal acceleration term in Equation (7) arises 
during application of the chain rule during differentiation 
of the second term in Equation (8) and, ultimately, arises 
as a result of differentiating the position vector with
respect to time. This is shown below in Equations (9) 
through (12), which show the differentiation with respect 
to time of Equation (8) in a series of steps. Equation (12) 
is equivalent to Equation (7).
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Figure 2 
McHenry’s Eccentric Collision Configuration 



In McHenry’s derivation, h1 and h2 are equivalent to

GPr /

r
, since h1 and h2 are taken perpendicular to the

collision force. McHenry treated h1 and h2 as constants. 
Treating the collision force moment arms as constants is 
an approximation, since for the system shown in Figure 
2, and for actual impacts, the moment arms of the
collision force will vary through time, due to variation in 
the direction of the instantaneous collision force and
movement of the point of application of the
instantaneous, resultant collision force. The significance 
of this for McHenry’s derivation is that since he assumed 
the collision force moment arm does not vary with time, 
the centripetal acceleration term does not arise when
Equation (31) is differentiated with respect to time, since 
the time derivative of GPr /

r
 is equal to zero.

So, the fundamental assumption of the derivation of the 
effective mass concept is that a representative, effective, 
or resultant collision force moment arm can replace the 
time-varying collision force moment arm that is present 
during the actual impact. This is the assumption tested 
by the research reported in this paper. Various
definitions of this resultant moment arm are plausible
and the derivation does not specify which definition
should be used. These various definitions will be
explored later and the results obtained using each one 
will be compared.

It should be noted that McHenry’s derivation of the
effective mass concept is quasi-one-dimensional,
meaning that, while rotational effects have been
incorporated into the derivation, the change in velocity is 
still assumed to occur along the X-direction. This is clear 
from the fact the derivation involves only scalar
quantities and is written in terms of X and its derivatives 
– Y and its derivatives do not appear. For an actual
offset impact, the change in velocity will occur in more 
than one coordinate direction. In practice, this simply
means that the one-dimensional ∆V obtained from the
CRASH 3 equations will occur along the direction of the 
principle collision force, which for CRASH 3 analysis, the 
user must specify. The direction of the principle force
becomes the one dimension along which McHenry’s
derivation is valid. This will be important later during
derivation of a generalized damage energy/ closing
speed formula.

VALIDATION OF THE EFFECTIVE MASS CONCEPT

To explore the physical accuracy of the effective mass 
concept in the CRASH 3 damage equations, the present 
research examined an offset barrier impact model that 
incorporated a collision force offset from the vehicle
center of gravity. This impact model (Figure 3) consisted 
of a mass and a spring with the point of connection
between the mass and the spring offset from the center 
of gravity of the mass. Also, the point of connection
between the mass and the spring is enclosed in a
frictionless track. The motivation for the addition of the
frictionless track is the empirical observation that in an 
actual offset barrier collision, the vehicle center of

rotation would roughly coincide with the point where the 
resultant collision force is transferred, the point 1P in the 
barrier impact model. The track in the model forces the 
center of rotation to reside at the point 1P.

Adding this track affects the system physically in two
ways. First, the spring force is confined to the X-
direction. Second, a Y-direction reaction force arises as 
a result of the interaction between the body and the
track. This reaction force will cause the resultant external 
force (collision force) to have a component in the
negative Y-direction.

The impact model of Figure 3 consists of a rectangular 
body of mass M1, with yaw moment of inertia I1, a linear 
spring, with stiffness coefficient k1, and a rigid barrier of 
infinite mass. The center of gravity of the body is located 
in the inertial reference frame with the coordinates xG
and yG and the orientation of the body is described by 
the angle 1ψ  measured clockwise off of the inertial x-

axis. The reference frame 1x′ - 1y′  is attached to the body 
and the point 1P is fixed in this reference frame at the 
coordinates a1 and b1. The spring is connected to the
point 1P on the body (x1P and y1P in the inertial reference 
frame) and point B (xB and yB in the inertial reference 
frame) on the barrier.

The following assumptions are invoked for the system 
shown in Figure 3:

1. The point 1P is confined to move in the x-
direction by the frictionless track.

2. The only forces acting on the mass are the 
spring force, generated by relative movement 
between point 1P on the body and point B on 
the barrier, and the constraint (reaction) force 
holding the point 1P in the track. Together, these 
constitute the “collision” force.

 
Figure 3 

Offset Barrier Impact Model 



3. The initial translational velocity and the initial 
orientation of the body are in the positive x-
direction.

4. The body has no initial rotational velocity.

5. At time t = 0, the spring applies no force to the 
body.

The barrier impact model shown in Figure 3 is a two
degree-of-freedom system.  A Newton-Euler formulation 
of the equations of motion for this system consists of the 
three Newton-Euler equations – one for each coordinate 
direction and one for rotation – augmented by a single 
algebraic constraint equation. The approach taken in this 
research for solving the equations of motion was to write 
the Newton-Euler equations, along with the constraint
equation, and then to eliminate the unknown constraint 
force and redundant coordinate from the equations of
motion by differentiating the constraint equation twice
with respect to time and substituting it into the equations 
of motion. This has the effect of reducing the equations 
of motion to two second-order differential equations, and 
therefore, of simplifying the numerical solution. After the 
solution of these two equations, the redundant
coordinate and reaction force were obtained by back-
substitution.

A free body diagram for the mass in the offset barrier
impact model follows in Figure 4. 

In Figure 4, SPRINGF  is the spring force and R is the

reaction force that maintains the point 1P in the track. 
The magnitude of the spring force is equal to the spring 
stiffness k1 multiplied by the compression of the spring
beyond its equilibrium position and is given by Equation 
(13).

( )PPSPRING xxkF 1011 −=

In Equation (13), 01Px  is the initial x-direction position of 

the point 1P and Px1  is the x-direction position of the 
point 1P at any time, t. In terms of the coordinates of the 
center of gravity,

1001 axx GP +=

11111 sincos ψψ baxx GP −+=

In Equation (14), 0Gx  is the initial x-direction position of 

the mass center of gravity. The moments, MG, about the 
center of gravity are given by Equation (16).
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Now, the Newton-Euler Equations of motion for the
offset barrier impact model can be written as follows:

SPRINGG Fxm =&&

Rym G =&&

GG MI =1ψ&&

In Equations (17) through (19), Gx&&  is the x-direction

acceleration of the mass center of gravity, Gy&&  is the y-

direction acceleration of the mass center of gravity, and 

1ψ&&  is the angular acceleration of the mass about the
center of gravity.

To confine the point 1P to move within the track, the
Newton-Euler equations of motion must be
supplemented with a single constraint equation. Letting
the origin of the inertial reference frame coincide with the 
Point B, this constraint equation can be written as
follows, in terms of the center of gravity coordinates:

0sincos 1111 =++ ψψ abyG

Differentiating Equation (20) twice with respect to time
yields Equation (21).
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In Equation (21), 1ψ&  is the angular velocity of the mass 
about the center of gravity. Equation (21) can be
substituted into Equation (18) and the resulting equation 
substituted into Equation (19) to yield two second-order

differential Equations for Gx  and 1ψ , which can be

solved using traditional numerical methods for

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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Figure 4 

Free-Body Diagram 



differential equations. The y-coordinate of the center of 
gravity and the reaction force from interaction with the
track can then be backed out after the x-direction and 
the rotational coordinates have been calculated at each 
time step.

NUMERICAL SIMULATIONS

Test Program

Simulations were run with the barrier impact model of
Figure 3 for the following five vehicle configurations:

Vehicle #1 (Miniature)
Vehicle Weight:  2469 lbs
Yaw Moment of Inertia:  1297.15 lb-ft-sec2

Vehicle Length:  13.32 ft 
Vehicle Width:  5.07 ft 
Front to CG:  6.33 ft
Stiffness per Unit Width:  72.11 lb/in2

Damage Width:  36 inches
a1:  3.31 feet

Vehicle #2 (Sub-Compact)
Vehicle Weight:  2753 lbs
Yaw Moment of Inertia:  1736.95 lb-ft-sec2

Vehicle Length:  14.58 ft 
Vehicle Width:  5.60 ft 
Front to CG:  6.94 ft
Stiffness per Unit Width:  66.38 lb/in2

Damage Width: 36 inches
a1: 3.62 feet

Vehicle #3 (Compact)
Vehicle Weight:  3247 lbs
Yaw Moment of Inertia:  2553.95 lb-ft-sec2

Vehicle Length:  16.35 ft 
Vehicle Width:  6.05 ft 
Front to CG:  7.48 ft
Stiffness per Unit Width:  69.97 lb/in2

Damage Width:  36 inches
a1:  3.97 feet

Vehicle #4 (Intermediate)
Vehicle Weight:  3947 lbs
Yaw Moment of Inertia:  3632.84 lb-ft-sec2

Vehicle Length:  17.73 ft 
Vehicle Width:  6.42 ft 
Front to CG:  8.23 ft
Stiffness per Unit Width:  66.7 lb/in2

Damage Width:  36 inches
a1:  4.26 feet

Vehicle #5 (Full-Size)
Vehicle Weight:  4565 lbs
Yaw Moment of Inertia:  4628.02 lb-ft-sec2

Vehicle Length:  18.64 ft 
Vehicle Width:  6.65 ft 
Front to CG:  8.42 ft
Stiffness per Unit Width:  113 lb/in2

Damage Width:  36 inches
a1:  5.11 feet

The parameters for these vehicles roughly correspond to 
parameters for the classes from the CRASH 3 default 
parameters. These were used because they provide
readily available and realistic representative dimensions 
for the simulations. The stiffness parameters are from 
the updated values in Reference 10. The yaw moments 
of inertia are calculated using the prism method. 

A total of 24 simulations runs were made, distributed
between the five vehicle setups. Twenty-two of the 24
runs were made with initial vehicle velocities of 60ft/s. 
The remaining two were run with initial velocities of
10ft/s. Numerical analysis was carried out using a fourth-
order Runge-Kutta technique with time steps varying
between 50 and 500 microseconds.

Simulation Results

The maximum deformation energy for each simulation
run is a part of the calculation of ∆V using the CRASH 3 
algorithm and so the maximum deformation energy for
each simulation is summarized in Table 1 below.

Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

Maximum Deformation 
Energy (ft-lb)1

1 10.0 0.0 3833.85
2 10.0 2.5 3403.33
3 60.0 0.0 138018.6
4 60.0 1.0 133117.7
5 60.0 2.0 118376.1
6 60.0 2.5 109972.6

Table 1a – Maximum Deformation Energies (Mini)

Test
Number

Initial Velocity 
(ft/s)

b1

(ft)
Maximum Deformation 

Energy (ft-lb)
7 60.0 0.0 153894.4
8 60.0 1.0 149.241.9
9 60.0 2.0 134556.7

10 60.0 2.5 127605.1
Table 1b – Maximum Deformation Energies 

(Subcompact)

Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

Maximum Deformation 
Energy (ft-lb)

11 60.0 0.0 181509.3
12 60.0 1.0 176921.2
13 60.0 2.0 210284.2
14 60.0 3.0 144987.9

Table 1c – Maximum Deformation Energies 
(Compact)

1 Maximum deformation energies in Tables 1a through 1e are 
approximate, but are within 1-2% of their actual values. The 
authors neglected to output these values in the simulation 
output file and to avoid having to rerun the simulations these 
values were calculated from other simulation output. 
Calculated values reported later in this paper did not rely on 
these approximate values, but rather on the actual simulation 
values.



Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

Maximum Deformation 
Energy (ft-lb)

15 60.0 0.0 220639.8
16 60.0 1.0 214830.3
17 60.0 2.0 201512.4
18 60.0 3.0 180951.8
19 60.0 4.0 159974.8
20 60.0 5.0 139830.4

Table 1d – Maximum Deformation Energies 
(Intermediate)

Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

Maximum Deformation 
Energy (ft-lb)

21 60.0 0.0 255186.3
22 60.0 1.0 250431.3
23 60.0 2.0 237351.0
24 60.0 3.0 219090.4

Table 1e – Maximum Deformation Energies 
(Full Size)

In order to address the accuracy of the CRASH 3
effective mass concept, two additional values were
extracted from the simulation runs. First, the resultant 
change in velocity experienced by the body center of
gravity from time zero to the time of maximum
deformation was obtained. This is the value that was
compared to the CRASH 3 calculated velocity changes. 
Second, appropriate values for the resultant collision
force moment arm were calculated, since this value is 
needed to calculate the effective mass factors, γ, which 
are also used in the calculation of the velocity change 
with the CRASH 3 algorithm equations.

The first of these, the resultant ∆V experienced by the 
vehicle in each simulation run, is easily obtained from 
the simulation data. The results are summarized in
Tables 2a through 2e below.

Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

∆Vresultant
(ft/s)

1 10.0 0.0 9.972

2 10.0 2.5 9.20
3 60.0 0.0 59.84
4 60.0 1.0 57.66
5 60.0 2.0 52.06
6 60.0 2.5 48.69

Table 2a – Actual Velocity Changes (Mini)

Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

∆Vresultant
(ft/s)

7 60.0 0.0 59.37
8 60.0 1.0 58.05
9 60.0 2.0 53.27

10 60.0 2.5 50.18
Table 2b – Actual Velocity Changes (Subcompact)

2 There is some numerical error in the calculated actual ∆Vs.
For the central impact case, b1=0, the actual ∆V should be 
equal to the impact speed. Thus, part of the error in the ∆V
calculations reported later is due to error in the calculation of 
the actual ∆V. This will be discussed later in this paper.

Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

∆Vresultant
(ft/s)

11 60.0 0.0 59.66
12 60.0 1.0 58.40
13 60.0 2.0 54.36
14 60.0 3.0 49.00

Table 2c – Actual Velocity Changes (Compact)

Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

∆Vresultant
(ft/s)

15 60.0 0.0 59.58
16 60.0 1.0 58.56
17 60.0 2.0 55.06
18 60.0 3.0 50.19
19 60.0 4.0 44.87
20 60.0 5.0 39.80

Table 2d – Actual Velocity Changes (Intermediate)

Test
Number

Initial Velocity 
(ft/s)

b1
(ft)

∆Vresultant
(ft/s)

21 60.0 0.0 59.28
22 60.0 1.0 58.85
23 60.0 2.0 56.16
24 60.0 3.0 52.24

Table 2e – Actual Velocity Changes (Full Size)

The second, obtaining a representative value for the
collision force moment arm is not as straight forward,
since it is not immediately clear what value of the
moment arm is the most representative. A number of
possibilities exist for defining this “average” moment
arm, including the following:

1. The first possibility is to let the average moment 
arm, havg, equal the initial offset of the collision 
force (b1). This would be expected to be the
least accurate, since the initial offset is the least 
representative of the moment arm throughout
the collision. This moment arm occurs at the
beginning of the impact, when the collision force 
is low.

2. The second possibility is to let havg equal the 
arithmetic mean value of the instantaneous
moment arms (the moment arm at each time
step) between time zero and maximum spring
compression. This average moment arm is given 
by

N

h
h

N

i
i

avg

∑
== 1 ,

where N is the number of time steps between
time zero and the maximum spring compression. 
We would expect this havg to be more
representative than the first definition, but still
not ideal since it gives equal weight to the h
value at every time step.

(22)



3. Thus, the third possibility is to let havg equal a 
weighted average of the instantaneous moment 
arms between time zero and maximum spring
compression. The weighting could utilize either
the instantaneous resultant collision forces or
the instantaneous resultant accelerations. This
average moment arm is given by

∑

∑

=

== N

i
i

N

i
ii

avg

a

ha
h

1

1 ,

where N is again the number of time steps
between time zero and the maximum spring
compression and ai is the acceleration at each 
time step.

4. The fourth possibility is to let havg equal the
collision force moment arm at the time the

maximum force (maximum deformation) is
achieved.

Ultimately, the correct choice between these four options 
will be the moment arm concept that reduces the error in 
the ∆V predicted by the CRASH 3 equations. For the
barrier impact simulations, the moment arm at any
instant in time is defined as the perpendicular distance 
between the collision force line of action and the vehicle 
center of gravity. The instantaneous moment arm is
given by Equation (24).

( )211
2
1

2
1 sin βαψ −++= bahi

Numerical calculations were carried out with all four of
the definitions for the “average” collision force moment 
arm. The resulting average moment arms, along with the 
effective mass multipliers that these moment arms
produce, are summarized below in Tables 3a through
3e.

Test
Number

Definition 1
havg = b1

(ft)

γ Definition 2
havg = hmean

(ft)

γ Definition 3
havg = hweighted

(ft)

γ Definition 4
havg = h(Fmax)

(ft)

γ

1 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
2 2.50 0.73 0.81 0.96 0.81 0.96 0.83 0.96
3 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
4 1.00 0.94 0.64 0.98 0.65 0.98 0.74 0.97
5 2.00 0.81 1.26 0.91 1.29 0.91 1.50 0.88
6 2.50 0.73 1.56 0.87 1.60 0.87 1.88 0.83

Table 3a – Moment Arms and Effective Mass Multipliers (Mini)

Test
Number

Definition 1
havg = b1

(ft)

γ Definition 2
havg = hmean

(ft)

γ Definition 3
havg = hweighted

(ft)

γ Definition 4
havg = h(Fmax)

(ft)

γ

7 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
8 1.00 0.95 0.64 0.98 0.65 0.98 0.74 0.97
9 2.00 0.84 1.27 0.93 1.30 0.92 1.50 0.90

10 2.50 0.76 1.57 0.89 1.61 0.89 1.88 0.85
Table 3b – Moment Arms and Effective Mass Multipliers (Subcompact)

Test
Number

Definition 1
havg = b1

(ft)

γ Definition 2
havg = hmean

(ft)

γ Definition 3
havg = hweighted

(ft)

γ Definition 4
havg = h(Fmax)

(ft)

γ

11 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
12 1.00 0.96 0.65 0.98 0.66 0.98 0.74 0.98
13 2.00 0.86 1.28 0.94 1.32 0.94 1.50 0.92
14 3.00 0.74 1.90 0.88 1.95 0.87 2.27 0.83

Table 3c – Moment Arms and Effective Mass Multipliers (Compact)
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Test
Number

Definition 1
havg = b1

(ft)

γ Definition 2
havg = hmean

(ft)

γ Definition 3
havg = hweighted

(ft)

γ Definition 4
havg = h(Fmax)

(ft)

γ

15 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
16 1.00 0.97 0.65 0.99 0.67 0.99 0.75 0.98
17 2.00 0.88 1.33 0.95 1.33 0.94 1.52 0.93
18 3.00 0.77 1.92 0.89 1.97 0.88 2.30 0.85
19 4.00 0.65 2.52 0.82 2.59 0.81 3.08 0.76
20 5.00 0.54 3.07 0.76 3.18 0.75 3.85 0.67

Table 3d – Moment Arms and Effective Mass Multipliers (Intermediate)

Test
Number

Definition 1
havg = b1

(ft)

γ Definition 2
havg = hmean

(ft)

γ Definition 3
havg = hweighted

(ft)

γ Definition 4
havg = h(Fmax)

(ft)

γ

21 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
22 1.00 0.97 0.58 0.99 0.59 0.99 0.65 0.99
23 2.00 0.89 1.15 0.96 1.17 0.96 1.30 0.95
24 3.00 0.78 1.70 0.92 1.74 0.92 1.95 0.90

Table 3e – Moment Arms and Effective Mass Multipliers (Full Size)

For the barrier impact case, M2 approaches infinity and 
E2 approaches zero and the CRASH 3 damage
algorithm equations for ∆V, Equations (3) and (4),
reduce to the following equation:

1

11
1

2

M

E
V

γ
=∆

The change in velocity (∆V) for each simulation was
calculated for each of the moment arm definitions. These 
calculated velocity changes were then compared to the 
actual ∆Vs in Table 2. Table 4 below summarizes the ∆V
results obtained from these calculations along with the
percent difference between the calculated ∆V and the
actual ∆V.

Test
Number

Definition 1
∆V (ft/s)

%
Difference

Definition 2
∆V (ft/s)

%
Difference

Definition 3
∆V (ft/s)

%
Difference

Definition 4
∆V (ft/s)

%
Difference

1 10.00 0.27 10.00 0.27 10.00 0.27 10.00 0.27
2 8.05 -12.45 9.25 0.51 9.25 0.51 9.24 0.43
3 60.00 0.27 60.00 0.27 60.00 0.27 60.00 0.27
4 57.13 -0.93 58.10 0.76 58.07 0.70 57.87 0.36
5 50.01 -3.95 53.17 2.12 53.04 1.88 52.25 0.37
6 45.76 -6.02 50.07 2.83 49.89 2.46 48.71 0.02

Table 4a – ∆V Results for Different Average Moment Arm Definitions (Mini)

Test
Number

Definition 1
∆V (ft/s)

%
Difference

Definition 2
∆V (ft/s)

%
Difference

Definition 3
∆V (ft/s)

%
Difference

Definition 4
∆V (ft/s)

%
Difference

7 60.00 1.05 60.00 1.05 60.00 1.05 60.00 1.05
8 57.59 -0.80 58.40 0.60 58.37 0.56 58.21 0.27
9 51.42 -3.46 54.16 1.68 54.05 1.48 53.39 0.22

10 47.63 -5.08 51.43 2.50 51.27 2.18 50.26 0.16
Table 4b – ∆V Results for Different Average Moment Arm Definitions (Subcompact)

Test
Number

Definition 1
∆V (ft/s)

%
Difference

Definition 2
∆V (ft/s)

%
Difference

Definition 3
∆V (ft/s)

%
Difference

Definition 4
∆V (ft/s)

%
Difference

11 60.00 0.57 60.00 0.57 60.00 0.57 60.00 0.57
12 58.04 -0.61 58.69 0.50 58.67 0.46 58.54 0.24
13 52.89 -2.70 55.15 1.45 55.07 1.30 54.55 0.35
14 46.13 -5.86 50.25 2.54 50.08 2.19 48.97 -0.08

Table 4c – ∆V Results for Different Average Moment Arm Definitions (Compact)
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Test
Number

Definition 1
∆V (ft/s)

%
Difference

Definition 2
∆V (ft/s)

%
Difference

Definition 3
∆V (ft/s)

%
Difference

Definition 4
∆V (ft/s)

%
Difference

15 60.00 0.70 60.00 0.70 60.00 0.70 60.00 0.70
16 58.31 -0.42 58.87 0.52 58.85 0.49 58.73 0.29
17 53.79 -2.30 55.75 1.26 55.68 1.12 55.21 0.27
18 47.68 -4.99 51.34 2.31 51.18 1.99 50.16 -0.05
19 41.19 -8.19 46.40 3.41 46.15 2.85 44.49 -0.86
20 35.10 -11.80 41.51 4.31 41.17 3.44 38.91 -2.23

Table 4d – ∆V Results for Different Average Moment Arm Definitions (Intermediate)

Test
Number

Definition 1
∆V (ft/s)

%
Difference

Definition 2
∆V (ft/s)

%
Difference

Definition 3
∆V (ft/s)

%
Difference

Definition 4
∆V (ft/s)

%
Difference

21 60.00 1.22 60.00 1.22 60.00 1.22 60.00 1.22
22 58.54 -0.53 59.13 0.47 59.12 0.45 59.06 0.34
23 54.59 -2.80 56.70 0.96 56.66 0.89 56.39 0.42
24 49.10 -6.02 53.15 1.74 53.06 1.57 52.48 0.45

Table 4e – ∆V Results for Different Average Moment Arm Definitions (Full Size)

DISCUSSION OF SIMULATION RESULTS

The results reported in Tables 4a through 4e reveal that 
the greatest accuracy in calculated ∆V is associated with 
Definition #4 of the collision force moment arm, the
moment arm at maximum spring compression. We also 
observe that Definitions #2, #3, and #4 of the resultant 
collision force moment arm produce a reasonable level 
of accuracy. In practice, reconstructionists will inspect 
and document residual crush, not dynamic maximum
crush, and so the collision force moment arm at
maximum penetration will not necessarily be accessible 
to the investigator through observation of the observable 
damage. Thus, it is significant that any of the last three 
moment arm definitions produce reasonable accuracy
since definitions 2 and 3 more closely approximate the 
moment arm that could be estimated by inspection of
residual damage.

The reader should note that this study tested the
potential accuracy of the CRASH3 equations in
relationship to the effective mass concept. This study
has shown that the effective mass concept is a good
theoretical construct for modeling the effects of collision 
force offset. However, this study has not dealt with
whether these levels of error can actually be achieved in
practice. Application of the CRASH3 equations in
practice, through the physical inspection and
interpretation of impact damage, presents at least two
difficulties that could cause inaccurate results, despite
the good theoretical foundation for the effective mass
concept. First, the reconstructionist must locate the
“point” of collision force application. In the simulations of 
this study, the collision force was applied at a well-
defined, easily identified point. During an actual crash, 
the collision force is distributed over a surface and the
investigator will have to decide what point should be
used to best represent the location of application of the 
resultant collision force. Ishikawa has given guidance in 
relationship to locating the point of collision force
application and the reader is referred to his publications 
for a helpful discussion [3,4]. The second difficulty
related to damage interpretation is to determine the

direction of the resultant collision force. The literature of 
accident reconstruction could benefit from a more
systematic treatment of damage interpretation in
relationship to determining the direction of the resultant 
collision force. 

Finally, it should be noted that there is some numerical 
error associated with the calculation of the actual ∆Vs in 
Tables 2a through 2e above. This can be seen by
examining Table 4a, for instance. For test #1, each of
the four moment arm definitions yield a ∆V of 10ft/s. A 
∆V of 10ft/s corresponds to the exact analytical solution 
for this case, and yet, Table 4a shows an overprediction 
of ∆V of 0.27 percent. This is because the “actual” value 
of ∆V from the numerical simulation was 9.97ft/s (Table 
2a), a value that is different than the exact solution. The 
implication of this is that at least part of the error in
calculated ∆V, reported in Tables 4a through 4e, is due 
to the values of the actual ∆Vs themselves. In most 
cases, the result is that the percent error listed in Tables 
4a through 4e are worse than they would be if the
numerical simulation was exact.

GENERALIZED CLOSING SPEED FORMULA

Having established that the effective mass concept is
theoretically reasonable, the effective mass concept was 
used to derive a damage energy/closing speed
relationship applicable to non-central collisions. This
derivation incorporates the same assumptions as the
CRASH 3 derivation, including the quasi-one-
dimensional nature of the derivation. The implication of
the quasi-one-dimensional assumption for the derived
damage energy/closing speed relationship is that the
closing speed calculated from the resulting formula is the 
closing speed along the direction of the principle force. 

Additional assumptions invoked in the derivation are as 
follows:



1. Restitution is negligible (e = 0).
2. Initial vehicle yaw velocities are 

negligible ( 021 == ii ψψ && ).

3. A common velocity is achieved at the 
point of collision force transfer.

We start by invoking the principle of conservation of
energy, written in a manner valid along the collision force 
line of action.
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In Equation (26), E is the combined damage energy for 

both vehicles, E1+E2, and 10X&  and 20X&  are the

components of the initial vehicle velocities along the

direction of the principle force. Also, fX1
&  and fX 2

&  are 

the vehicle velocities along the direction of the principle 
force at the time the common velocity is reached at point 
P, and f1ψ&  and f2ψ&  are the angular velocities, also at 

the time of common velocity at point P. 

Integrating Equation (6) for both vehicles and invoking
the assumption that the initial angular velocities are zero, 
we can show that, at the instant the common velocity is 
achieved at point P,

fPf hXX 111 ψ&&& −=

and

fPf hXX 222 ψ&&& −= .

From the Newton-Euler equations of motion for the
system in Figure 2, combined with Equation (6), it can be 
shown that 
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A similar relationship can be written for Vehicle 2.
Integration of Equation (29) over the time period from 
initial contact until the time the common velocity is
reached, assuming the initial angular velocity of the
vehicle is zero, yields
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h
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This equation is equivalent to one derived in Reference 
11. Again, a similar equation can be written for Vehicle 
2. Substitution of Equations (27), (28), and (30), along

with Equation (30)’s counterpart for Vehicle 2, into
Equation (26) leads to Equation (31).
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Now, invoke the principle of conservation of linear
momentum.

ff XMXMXMXM 2211202101
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Substitution of Equations (27) and (28) into Equation
(32) yields
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Simplifying Equation (33) algebraically, and again
invoking Equation (30) and its counterpart, leads to
Equation (34).
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Now, square Equation (34) and equate it with Equation 

(31) to eliminate PX& .
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Simplifying Equation (35) algebraically leads to Equation 
(36), which relates the initial closing speed, along the
line of action of the collision force, to the damage
energy.
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As an intermediate step in the derivation of Equations (1) 
and (2), McHenry arrived at the following equation
relating the closing speed to the damage energy for the 
case of central collisions:
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It is clear from comparing Equations (36) and (37) that 
the only difference between the equation for the central 
impact case and the equation for the general case of
non-central collisions is that the masses in Equation (37) 
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have been replaced by effective masses in Equation
(36). As with McHenry’s extension of the CRASH 3
damage analysis equations, the simple, closed-form
nature of the central impact damage energy/closing
speed Equation has been maintained.

Equation (36) can also be written in terms of the vehicle 
weights, a form more convenient for application of the
Equation, as follows:
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In Equation (38), we have replaced 2010 XX && −  with the 

notation, PDOFclosing,V . From this point forward, this new 

notation will be used to indicate the closing speed
projected along the line of action of the collision force, 

PDOFclosing,V . This change in notation is necessary, as the 

following sections aim at transforming the calculated
closing speed along the direction of the collision force to 
a direction more useful for calculating actual vehicle
impact speeds.

CLOSING SPEED DIRECTION

The magnitude of the initial closing speed (relative
velocity) between two vehicles depends on the line to
which that closing speed is referenced. Equation (27)
yields the closing speed at impact projected onto the line 
of action of the resultant collision force. Typically,
analysis of a motor vehicle accident will require the
closing speed along a different reference line, such as 
the closing speed along the initial velocity direction of
one of the vehicles. The speed obtained from Equation 
(38) will need to be transformed to reflect the closing
speed along that different reference line. It should be
noted that, in general, impacting vehicles will not have
initial velocity vectors along the same line, and so the
closing speed will be different depending on which initial 
velocity direction is used as a reference. 

Figure 5 depicts the general geometry of the
transformation of the closing speed along the principle
direction of force into the closing speed along the initial 
velocity direction of the first vehicle. Initial velocity
vectors are depicted for both vehicles, along with the line 
of action of the principle force and the angles defining
the orientation of the initial velocity directions of the
vehicles relative to the principle force line.

Based on geometry and trigonometric identities, it can
be shown that, in general,
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Figure 5
Closing Speed Transformation Geometry

In Equation (39), Vclosing,V1 is the closing speed projected 
along the direction of Vehicle 1’s initial velocity, 1V  and 

2V  are the magnitudes of the vehicles’ initial velocities, 

1θ  is the angle between the principle direction of force 

and the initial velocity direction of Vehicle 1, and 2θ  is 
the angle between the principle direction of force and the 
initial velocity direction of Vehicle 2. The angles 1θ  and 

2θ  are measured counter-clockwise off of the line of
action of the principle force.

Equation (39) can be restated as follows:
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V

Equation (40) shows that, for the general case, the
transformation of the closing speed from the collision
force line of action to a reference line coinciding with the 
initial velocity direction of one of the vehicles, or
calculation of the reference vehicle velocity, requires
knowledge of the magnitude of the initial velocity of the 
other vehicle. In practice, this requirement can be met by 
combining Equations (38) and (40) with an energy
balance equation or with a physical constraint on a
vehicle’s speed. The former, combining Equations (38)
and (40) with an energy balance equation, is
demonstrated in the next section. As an example of the 
latter, we can note that the speed of a left-turning vehicle 
can sometimes be bracketed by consideration of the turn
geometry and lateral acceleration capabilities of the
vehicle. Also, in some cases, a vehicle’s speed will be 
known from data downloaded from an Event Data
Recorder.

When 12 θθ −  is equal to 0 or 180 degrees, and the
closing speed is being calculated, the requirement to
know one of the vehicles’ absolute speed is relaxed and 
the transformation is accomplished with Equation (41).

(38)

(40)

(39)
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CONSERVATION OF ENERGY

For a two-vehicle impact, where the vehicles have
negligible initial rotational kinetic energy, the principle of 
conservation of energy can be formulated in the
following energy balance Equation:3
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In Equation (42), V1f  and V2f  are the center of gravity 
velocities when the common velocity is achieved. If the 
terms on the right side of Equation (42) can be
calculated, then Equations (38), (40), and (42) constitute 
a system of three Equations with three unknowns and
the initial vehicle speeds can be calculated. The
literature contains extensive discussion of how to
quantify the damage energy and post-impact kinetic
energy terms and that discussion will not be expanded 
here. Our discussion here will focus on calculation of the 
post-impact rotational kinetic energy terms, by relating
that rotational kinetic energy to the vehicle inertial
properties, the moment arm of the collision force and the 
damage energy.

Equation (30) can be rewritten as
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Combining Equation (43) with Equation (3) yields
Equation (44).
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Equation (44) and its counterpart for Vehicle 2 can be
substituted into the rotational kinetic energy terms of
Equation (42). Following this substitution, algebraic
manipulation yields Equation (45).
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3 Whereas Equation (26) is only valid when the X-direction
coincides with the line of action of the collision force, 
Equation (42) is independent of the orientation of the inertial 
reference frame.

A similar relationship can be written for Vehicle 2.
Finally, Equation (45) and its counterpart for Vehicle 2
can be substituted into Equation (42) to yield Equation 
(46).
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β is given by Equation (47).
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Now, when supplemented with techniques for calculating 
the damage energy and the post-impact kinetic energy, 
Equations (38), (40), and (46) form a system of three
equations with three unknowns and the initial vehicle
speeds can be calculated.

CONCLUSIONS

This study has confirmed that, as long as a reasonable 
representative collision force moment arm can be
obtained, the effective mass concept accurately captures 
the effects of collision force offset. The greatest
accuracy is achieved by selecting the representative
moment arm of the collision force as close to maximum 
deformation as possible. A damage energy/closing
speed relationship was derived for the general case of
non-central collisions, where the line of action of the
collision forces does not pass through the vehicle
centers of gravity. Second, this generalized damage
energy/closing speed relationship was integrated with an 
energy balance equation, via a derived relationship
between damage energy and post-impact rotational
kinetic energy, to provide a complete set of equations for 
vehicle speed analysis.
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